
Flocking Behaviour Simulation : Explanation and
Enhancements in Boid Algorithm

Mohit Sajwan*, Devashish Gosain**, Sagarkumar Surani**

*Masters of Engineering, Department of Computer Science and Engineering,Birla Institute Of Technology, Mesra,

Ranchi, Jharkhand 835215, India
**Masters of Technology, Department of Computer Science and Engineering,Birla Institute Of Technology, Mesra,

Ranchi, Jharkhand 835215, India

Abstract-Few things in nature is as impressive as how some
animals seems to be able to organize themselves into larger
groups so effortlessly. By learning more about this fascinating
behavior we might be able to apply this knowledge to find new
solutions to our own problems. One of the first stepping stones
to get to an understanding of flocking behavior is to be able to
simulate it. The first flocking-behavior simulation was done
on a computer by Craig Reynolds in 1986 he called his
simulation program: “Birds”. It’s still to this day to most used
model for simulating flocking behavior. This paper attempts
to critically examine the algorithm proposed with some
modifications and enhancements.

I. BACKGROUND
Animal behavior has always been a source of amazement to
mankind. In many areas the abilities of the animals
surpasses the abilities of us humans, but with the use of
technology we have been able to best the animals in more
and more areas. By studying the behavior of animals we
have been able to find many interesting solutions animals
apply to the problems in their environment. These solutions
has inspired many people to think of problems in new
ways, sometimes leading to new solutions, often with great
results. But few things are more impressive than the way
some creatures organize themselves in larger groups: birds,
fishes and ants; flocks, shoals and swarms. If we can
understand the mechanism of how these organizations
emerge, we might be able to use the same mechanics to
achieve what we have not achieved before.

II. INTRODUCTION
Flocking is a computer model for the coordinated motion of
groups (or flocks) of entities called birds. Flocking
represents group movement—as seen in bird flocks and fish
schools—as combinations of steering behaviors for
individual birds, based on the location and velocities of
nearby flock mates. Though individual flocking behaviors
(sometimes called conducts) are quite simple, they combine
to give birds and flocks interesting overall behaviors, which
would be complicated to program explicitly. Flocking is
often grouped with Artificial Life algorithms because of its
use of emergence: complex global behaviors arise from the
interaction of simple local conducts. A crucial part of this
complexity is its unpredictability over time; a bird flying in
a particular direction may do something different a few
moments later. Flocking is useful for games where groups
of things, such as soldiers, monsters, or crowds move in
complex, coordinated ways. Flocking appears in games

such as Unreal (Epic), Half-Life (Sierra), and Enemy
Nations (Windward Studios). [1]
One of the first stepping stones to get to an understanding
of flocking behavior is to be able to simulate it. With a
simulation we could easily play around with the different
parameters and find a variant that suits our needs. The first
flocking-behavior simulation was done on a computer by
Craig Reynolds in 1986 he called his simulation program:
“Birds” [2]. Birds was named after the simple agents in the
system which he also called birds. The birds used a set of
simple conducts to determine how they would move. The
three conducts formulated by Reynolds in his Birds
program are still the basis of modern flocking simulation
and are widely used to these days. These are the three
conducts as they are described by Reynolds on his
website [3]:
Separation Steer to avoid crowding local flockmates.
Alignment Steer towards the average heading of local
flockmates.
Cohesion Steer to move toward the average location of
local flockmates.
In 1990 Frank Heppner and Ulf Grenander proposed
another model for simulating flocking behavior [4]. Their
model also consists largely by the application of three
conducts:
Homing each member of the flock tries to stay in the
roosting area.
Velocity regulation each member of the flock tries to fly
with a certain predefined flight speed - it tries to return to
that speed if perturbed.
Interaction if two flockmates are too close to one another,
they try to move apart; if they are too distant, they do not
influence each other; otherwise they try to move closer
together.
One of the primary features of this model (in contrast to
Reynolds model) is the inclusion of random disturbances. It
simulated this disturbances with a Poisson stochastic
process, however one of the weaknesses of this model is
that it won’t yield satisfiable results without these
disturbances.
In this report we decided to focus on Reynolds model for
flocking behavior, for several reasons:
• It is the most widely used of the two.
• There is a lot more material concerning Reynolds model.
• It seems to be the most simple and elegant of the two as it
does not rely on external disturbances.

Mohit Sajwan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5539-5544

www.ijcsit.com 5539

The three conducts of Reynolds can be graphically depicted
as

 Fig (i)

The circles in Figure (i) surround the center bird’s local
flockmates. Any birds beyond a certain distance of the
central bird don’t figure in the conduct-based calculations.
A more elaborate notion of neighborhood only considers
flockmates surrounding the bird’s current forward direction
(Figure (ii)). The extent of neighborhood is governed by an
arc on either side of the forward vector. This reduced space
more closely reflects how real-world flock members
interact.

Fig (ii)

Many other conducts have been proposed over the years,
including ones for obstacle avoidance and goal seeking.
Reynolds’s web site (http://www.red3d.com/cwr/birds/)
contains hundreds of links to relevant information,
including flocking in games, virtual reality, computer
graphics, robotics, art, and artificial life.
The following section explains the Pseudocode in detail
followed by further modifications.

III. THE PSEUDOCODE
The birds program has the following structure:
 start_simulation()
 LOOP
 draw_birds()
 mov_birds_to_new_loc()
 END LOOP
The start_simulation() procedure puts all the birds at a
starting location. Purposely they are placed at random
locations off-screen to start with, so that when the

simulation starts they all fly in towards the middle of the
screen, rather than suddenly appearing in mid-air.
The draw_birds() procedure simply draws one 'frame' of
the animation, with all the birds in their current locations.
Note that the boids’ algorithm works just as well in two
dimensions as it does in three dimensions.
The procedure we have called mov_ birds_ to_ new_ loc()
 contains the actual boids algorithm. Note that all it
involves simple vector operations on the locations of the
birds. Each of the birds’ conducts works independently, so,
for each bird, we can calculate how much it will get moved
by each of the three conducts, calculating three velocity
vectors. Then we can add those three vectors to the bird's
current velocity to work out its new velocity. Interpreting
the velocity as how far the bird moves per time step we
simply add it to the current location, arriving at the
following pseudo-code:

PROCEDURE mov_birds_to_new_loc()
 Vector v1, v2, v3
 Bird b
 FOR EACH BIRD b
 v1 = conduct1 (b)
 v2 = conduct2 (b)
 v3 = conduct3 (b)
 b.velocity = b.velocity + v1 + v2 + v3
 b.location = b.location + b.velocity
 END

END PROCEDURE
We'll now look at each of these three conducts in turn.
The Birds Conducts
Conduct 1: Birds try to fly towards the centre of location of
neighboring birds.
The 'center of location' is simply the average location of all
the birds. Assume we have N birds, called b1, b2, ..., bN.
Also, the location of a bird b is denoted b.location. Then
the 'centre of location' c of all N birds is given by:
c = (b1.location + b2.location + ... + bN.location) / N
(Locations here are vectors, and N is a scalar.)
However, the 'centre of location' is a property of the entire
flock; it is not something that would be considered by an
individual bird. We prefer to move the bird toward its
'perceived centre', which is the centre of all the other birds,
not including itself. Thus, for birdJ (1 <= J <= N), the
perceived centre pcJ is given by:
tloc = (b1.location + b2.location + ... + bJ-1.location
+bJ+1.location + ... + bN.location)
pcJ = tloc/N-1
Having calculated the perceived centre, we need to work
out how to move the bird towards it. To move it 1% of the
way towards the centre (this is about the factor we use) this
is given by (pcJ - bJ.location) / 100.
Summarizing this in pseudocode:
PROCEDURE conduct1 (bird bJ)
 Vector pcJ
 FOR EACH BIRD b
 IF b!= bJ THEN
 pcJ = pcJ + b.location
 END IF

Mohit Sajwan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5539-5544

www.ijcsit.com 5540

 END
 pcJ = pcJ / N-1
 RETURN (pcJ - bJ.location) / 100
END PROCEDURE
Thus we have calculated the first vector offset, v1, for the
bird.

Conduct 2: Birds try to keep a small distance away from
other objects (including other birds).
The purpose of this conduct is for birds to make sure they
don't collide into each other. We will examine each bird,
and if it's within a defined small distance (say 100 units) of
another bird move it as far away again as it already is. This
is done by subtracting from a vector c the displacement of
each bird which is nearby. We initialize c to zero as we
want this conduct to give us a vector which when added to
the current location moves a bird away from those near it.
PROCEDURE conduct2(bird bJ)
Vector c = 0;
FOR EACH BIRD b
 IF b != bJ THEN
 IF |b.location - bJ.location| < 100
 THEN
 c = c - (b.location - bJ.location)
 END IF
 END IF
 END
RETURN c
END PROCEDURE

It may seem odd that we choose to simply double the
distance from nearby birds, as it means that birds which are
very close are not immediately "repelled". Remember that
if two birds are near each other, this conduct will be applied
to both of them. They will be slightly steered away from
each other, and at the next time step if they are still near
each other they will be pushed further apart. Hence, the
resultant repulsion takes the form of a smooth acceleration.
It is a good idea to maintain a principle of ensuring smooth
motion. If two birds are very close to each other it's
probably because they have been flying very quickly
towards each other, considering that their previous motion
has also been restrained by this conduct. Suddenly jerking
them away from each other, such that they each have their
motion reversed, would appear unnatural, as if they
bounced off each other's invisible force fields. Instead, we
have them slow down and accelerate away from each other
until they are far enough apart for our liking.

Conduct 3: Birds try to match velocity with near birds.
This is similar to Conduct 1, however instead of averaging
the locations of the other birds we average the velocities.
We calculate a 'perceived velocity', pvJ, then add a small
portion (about fourth) to the bird's current velocity.

PROCEDURE conduct3(bird bJ)
Vector pvJ
FOR EACH BIRD b
 IF b != bJ THEN
 pvJ = pvJ + b.velocity

 END IF
END
pvJ = pvJ / N-1
RETURN (pvJ - bJ.velocity) / 4
END PROCEDURE

IV. FURTHER IMPROVEMENTS
The three birds conducts sufficiently demonstrate a
complex emergent flocking behaviour. They are all that is
required to simulate a distributed, leaderless flocking
behaviour.
However in order to make other aspects of the behaviour
more life-like, extra conducts and limitations can be
implemented.
These conducts will simply be called in
the mov_birds_to_new_loc() procedure as follows:

PROCEDURE mov_birds_to_new_loc()
Vector v1, v2, v3, v4, ...
 FOR EACH BIRD b
 v1 = conduct1(b)
 v2 = conduct2(b)
 v3 = conduct3(b)
 v4 = conduct4(b)
 … .
 …
 b.velocity = b.velocity + v1 + v2 + v3+ v4 + ...
 b.location = b.location + b.velocity
END

END PROCEDURE

Hence each of the following conducts is implemented as a
new procedure returning a vector to be added to a bird's
velocity.

V. GOAL SETTING
Reynolds uses goal setting to steer a flock down a set path
or in a general direction, as required to ensure generally
predictable motion for use in computer animations and film
work. We have not used such goal setting in our
simulations, however here are some example
implementations:

A. ACTION OF A STRONG WIND OR CURRENT
For example, to simulate fish schooling in a moving river
or birds flying through a strong breeze.
PROCEDURE strong_wind(Bird b)
 Vector wind
 RETURN wind
END PROCEDURE
This function returns the same value independent of the
bird or fish being examined; hence the entire flock will
have the same push due to the wind.

B. TENDENCY TOWARDS A PARTICULAR PLACE
For example, to steer a sparse flock of sheep or cattle to a
narrow gate. Upon reaching this point, the goal for a
particular bird could be changed to encourage it to move
away to make room for other members of the flock. Note
that if this 'gate' is flanked by impenetrable objects as
accounted for in Conduct 2 above, then the flock will

Mohit Sajwan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5539-5544

www.ijcsit.com 5541

realistically mill around the gate and slowly trickle through
it.
PROCEDURE tend_to_place(Bird b)
 Vector place
 RETURN (place - b.location) / 100
END PROCEDURE
Note that this conduct moves the bird 1% of the way
towards the goal at each step. Especially for distant goals,
one may want to limit the magnitude of the returned vector.

C. LIMITING THE SPEED
We find it a good idea to limit the magnitude of the birds'
velocities, this way they don't go too fast. Without such
limitations, their speed will actually fluctuate with a
flocking-like tendency, and it is possible for them to
momentarily go very fast. We assume that real animals
can't go arbitrarily fast, and so we limit the birds' speed.
(Note that we are using the physical definitions
of velocity and speed here; velocity is a vector and thus has
both magnitude and direction, whereas speed is a scalar and
is equal to the magnitude of the velocity).
For a limiting speed vlim:
 PROCEDURE limit_velocity(Bird b)
 Integer vlim
 Vector v
 IF |b.velocity| > vlim THEN
 b.velocity = (b.velocity / |b.velocity|)* vlim
 END IF
 END PROCEDURE
This procedure creates a unit vector by
dividing b.velocity by its magnitude, then multiplies this
unit vector by vlim. The resulting velocity vector has the
same direction as the original velocity but with magnitude
vlim.
Note that this procedure operates directly on b.velocity,
rather than returning an offset vector. It is not used like the
other conducts; rather, this procedure is called after all the
other conducts have been applied and before calculating the
new location, i.e. Within the
procedure move_all_birds_to_new_locations:
 b.velocity = b.velocity + v1 + v2 + v3 + ...
 limit_velocity(b)
 b.location = b.location + b.velocity

D. BOUNDING THE LOCATION
In order to keep the flock within a certain area (e.g. to keep
them on-screen), rather than unrealistically placing them
within some confines and thus bouncing off invisible walls,
we implement a conduct which encourages them to stay
within rough boundaries. That way they can fly out of
them, but then slowly turn back, avoiding any harsh
motions.
PROCEDURE bound_location(Bird b)
 Integer Xmin, Xmax, Ymin, Ymax, Zmin,
Zmax
 Vector v
 IF b.location.x < Xmin THEN
 v.x = 10
 ELSE IF b.location.x > Xmax THEN
 v.x = -10
 END IF
 IF b.location.y < Ymin THEN

 v.y = 10
 ELSE IF b.location.y > Ymax THEN
 v.y = -10
 END IF
 IF b.location.z < Zmin THEN
 v.z = 10
 ELSE IF b.location.z > Zmax THEN
 v.z = -10
 END IF

 RETURN v
END PROCEDURE
Note: the value 10 is an arbitrary amount to encourage
them to fly in a particular direction.

E. PERCHING

The desired behaviour here has the birds occasionally
landing and staying on the ground for a brief period of time
before returning to the flock. This is accomplished by
simply holding the bird on the ground for a brief period (of
random length) whenever it gets to ground level, and then
letting it go.
When checking the bounds, we test if the bird is at or
below ground level, and if so we make it perch. We
introduce the Boolean b.perching for each bird b. In
addition, we introduce a timer b.perch_timer which
determines how long the bird will perch for. We make this
a random time, assuming we are simulating the bird eating
or resting.
Thus, within the bound_location procedure, we add the
following lines:
 Integer GroundLevel

 ...

 IF b.location.y < GroundLevel THEN
 b.location.y = GroundLevel
 b.perching = True
 END IF
It is held on the ground by simply not applying the birds’
conducts to its behaviour (obviously, as we don't want it to
move). Thus, before attempting to apply the conducts we
check if the bird is perching, and if so we decrement the
timer b.perch_timer and skip the rest of the loop. If the bird
has finished perching then we reset the b.perching flag to
allow it to return to the flock.
 PROCEDURE mov_birds_to_new_loc()

 Vector v1, v2, v3, ...
 Bird b

 FOR EACH BIRD b

 IF b.perching THEN
 IF b.perch_timer > 0 THEN
 b.perch_timer = b.perch_timer - 1
 NEXT
 ELSE
 b.perching = FALSE
 END IF

Mohit Sajwan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5539-5544

www.ijcsit.com 5542

 END IF

 v1 = conduct1(b)
 v2 = conduct2(b)
 v3 = conduct3(b)
 ...
 b.velocity = b.velocity + v1 + v2 + v3 + ...
 ...
 b.location = b.location + b.velocity
 END

 END PROCEDURE
Note that nothing else needs to be done to simulate the
perching behaviour. As soon as we re-apply the birds
conducts this bird will fly directly towards the flock and
continue on as normal.

VI. ANTI-FLOCKING BEHAVIOUR
During the course of a simulation, one may want to break
up the flock for various reasons. For example the
introduction of a predator may cause the flock to scatter in
all directions.

A. SCATTERING THE FLOCK
Here we simply want the flock to disperse; they are not
necessarily moving away from any particular object, we
just want to break the cohesion (for example, the flock is
startled by a loud noise). Thus we actually want
to negate part of the influence of the birds conducts.
Of the three conducts, it turns out we only want to negate
the first one (moving towards the centre of mass of
neighbors) – i.e. We want to make the birds move away
from the centre of mass. As for the other conducts:
negating the second conduct (avoiding nearby objects) will
simply cause the birds to actively run into each other, and
negating the third conduct (matching velocity with nearby
birds) will introduce a semi-chaotic oscillation.
It is a good idea to use non-constant multipliers for each of
the conducts, allowing us to vary the influence of each
conduct over the course of the simulation. If we put these
multipliers in the
move_all_birds_to_new_locations procedure, the new
definition of this procedure will be :
PROCEDURE mov_birds_to_new_loc ()

Vector v1, v2, v3,...
Integer m1, m2, m3,...
Bird b
 FOR EACH BIRD b
 ...
 v1 = m1 * conduct1 (b)
 v2 = m2 * conduct2 (b)
 v3 = m3 * conduct3 (b)
 ...
 b.velocity = b.velocity + v1 + v2 + v3 + ...
 ...
 b.location = b.location + b.velocity
 END
END PROCEDURE
Then, during the course of the simulation, simply
make m1 negative to scatter the flock. Setting m1 to a

positive value again will cause the flock to spontaneously
re-form.

B. TENDENCY AWAY FROM A PARTICULAR
PLACE

If, on the other hand, we want the flock to continue the
flocking behaviour but to move away from a particular
place or object (such as a predator), then we need to move
each bird individually away from that point. The
calculation required is identical to that of moving towards a
particular place, implemented above as tend_to_place; all
that is required is a negative multiplier:
 Vector v
 Integer m
 Bird b

 ...

 v = -m * tend_to_place(b)
So we see that each of the extra routines are very simple to
implement, as are the initial conducts. We achieve
complex, life-like behaviour by combining all of them
together. By varying the influence of each conduct over
time we can change the behaviour of the flock to respond to
events in the environment such as sounds, currents and
predators.

VII. AUXILIARY FUNCTIONS
It is handy to set up a set of Vector manipulation routines
first to do addition, subtraction and scalar multiplication
and division. For example, all the additions and
subtractions in the above pseudocode are vector operations,
so for example the line:
 pcJ = pcJ + b.location
will end up looking something like:
 pcJ = Vector_Add(pcJ, b.location)
where, Vector_Add is a procedure defined thus:
PROCEDURE Vector_Add(Vector v1, Vector v2)
 Vector v
 v.x = v1.x + v2.x
 v.y = v1.y + v2.y
 v.z = v1.z + v2.z
 RETURN v
END PROCEDURE
and the line:
 pcJ = pcJ / N-1
will be something like:
 pcJ = Vector_Div(pcJ, N-1)
where Vector_Div is a scalar division:

PROCEDURE Vector_Div(Vector v1, Integer A)
 Vector v
 v.x = v1.x / A
 v.y = v1.y / A
 v.z = v1.z / A
 RETURN v
END PROCEDURE

It has found its role in various areas, some of which are
enumerated as follows.

Mohit Sajwan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5539-5544

www.ijcsit.com 5543

VIII. APPLICATIONS
In Cologne, Germany, two biologists from the University
of Leeds demonstrated a flock like behavior in humans.
The group of people exhibited a very similar behavioral
pattern to that of a flock, where if 5% of the flock would
change direction the others would follow suit. When one
person was designated as a predator and everyone else was
to avoid him, the flock behaved very much like a school of
fish.
Flocking has also been considered as a means of
controlling the behavior of Unmanned Air Vehicles
(UAVs).
Flocking is a common technology in screensavers, and has
found its use in animation. Flocking has been used in many
films to generate crowds which move more realistically.
Tim Burton's Batman Returns (1992) featured flocking
bats, and Disney's The Lion King (1994) included
a wildebeest stampede.
Flocking behaviour has been used for other interesting
applications. It has been applied to automatically program

Internet multi-channel radio stations. It has also been used
for visualizing information and for optimization tasks. [5,6]

IX. CONCLUSION
There has been significant applications, of above
mentioned Boid’s algorithm. There can be more possible
conducts and constraints in Boid’s Algorithm. Depending
on the need and application of this algorithm in different
domains, there can be multiple conducts implemented using
the specific domain knowledge.

REFERENCES
[1] Killer Programing in Java (chapter 22), Andrew Davison
[2] Craig W. Reynolds. Flocks, herds, and schools: A distributed

behavioral model. In Computer Graphics, pages 25–34, 1987.
[3] Craig W. Reynolds. Boids, Background and Update.

http://www.red3d.com/cwr/boids/, 2007.
[4] F. Heppner and U. Grenander. A stochastic nonlinear model for

coordinatedbird flocks. 1990.
[5] http://en.wikipedia.org/wiki/Flocking_(behavior)
[6] http://en.wikipedia.org/wiki/Boids

Mohit Sajwan et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5539-5544

www.ijcsit.com 5544

